Forcing with filters and ideals (part III.) Malykhin's Problem

Michael Hrušák

CCM Universidad Nacional Autónoma de México michael@matmor.unam.mx

> Hejnice 2013

Basics

- An ideal *I* on ω is ω-hitting if for every (A_n : n ∈ ω) ⊆ [ω]^ω there is an *I* ∈ *I* such that A_n ∩ *I* is infinite for all n ∈ ω,
- If you split an ω -hitting ideal into countably many pieces, one of the pieces is ω -hitting.
- (Katětov order)Let \mathcal{I} and \mathcal{J} . $\mathcal{I} \leq_{K} \mathcal{J}$ if there is a function $f: \omega \to \omega$ such that $f^{-1}[I] \in \mathcal{J}$, for all $I \in \mathcal{I}$.

 $\mathbb{L}_{\mathcal{F}} = \{ T \subseteq \omega^{<\omega} : T \text{ is a tree with stem } s_{\mathcal{T}} \text{ such that} \\ \text{for all } t \in T, t \supseteq s_{\mathcal{T}} \Rightarrow succ_{\mathcal{T}}(t) \in \mathcal{F} \},$

ordered by inclusion.

$$succ_T(t) = \{n \in \omega : t^n \in T\},\$$

Definition

Given $s \in \omega^{<\omega}$ and φ formula in the forcing language we say that s favours φ if no condition in $\mathbb{L}_{\mathcal{F}}$ with stem s forces " $\neg \varphi$ ".

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Definition

A forcing notion \mathbb{P} strongly preserves ω -hitting if for every sequence $\langle \dot{A}_n : n \in \omega \rangle$ of \mathbb{P} -names for infinite subsets of ω there is a $\langle B_n : n \in \omega \rangle$ sequence of infinite subsets of ω such that for any $B \in [\omega]^{\omega}$, if $B \cap B_n$ is infinite for all n then $\Vdash_{\mathbb{P}}$ " $B \cap \dot{A}_n$ is infinite for all n".

Proposition 1. (Brendle-H.)

Finite support iteration of forcings strongly preserving ω -hitting strongly preserves ω -hitting.

Lemma 2. (Brendle-H.)

Let ${\cal I}$ be an ideal on ω and let ${\cal F}={\cal I}^*$ be the dual filter. Then the following are equivalent:

(1) For every
$$A \in \mathcal{I}^+$$
 and every $\mathcal{J} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright A$ the ideal \mathcal{J} is not ω -hitting,

(2) $\mathbb{L}_{\mathcal{F}}$ strongly preserves ω -hitting, and

(3) $\mathbb{L}_{\mathcal{F}}$ preserves ω -hitting.

Theorem (H.-Ramos García)

It is consistent with **ZFC** that every separable Fréchet group is metrizable.

Plan of the proof:

Let $V \models CH$ and $\diamond(S_{\omega_1}^{o_2})$. Construct a FS iteration of length ω_2 σ -centered forcing notions, eventually taking care of all countable Fréchet groups of weight ω_1 . At stage α when dealing with the group \mathbb{G}_{α} handed to us by a bookkeeping device we need to do three things:

- add a set A ⊆ G_α which has the neutral element 1_G as an accumulation point, and does not have a sequence converging to1_G,
- e make sure that we do not add convergent sequences to the sets added earlier in the iteration.
- **(**) make sure that $1_{\mathbb{G}}$ remains in the closure of A later on.

- Given a space X and a point x ∈ X we denote by I_x the dual ideal to the filter of neighbourhoods of x, I_x = {A ⊆ X : x ∉ Ā}.
- If X is countable then the infinite members of $\mathcal{I}^{\perp} = \{J \subseteq X : (\forall I \in \mathcal{I}) | I \cap J | < \omega\}$ are exactly the sequences convergent to x.
- The space X is Fréchet at x iff every \mathcal{I}_x -positive set contains an infinite element of \mathcal{I}_x^{\perp} iff $\mathcal{I}_x^{\perp \perp} = \mathcal{I}_x$ iff for no $A \in \mathcal{I}_x^+$ is the ideal $\mathcal{I}_x \upharpoonright A$ tall.

Definition

A forcing notion \mathbb{P} seals an ideal \mathcal{I} if it adds an \mathcal{I} -positive set A such that the ideal $\mathcal{I} \upharpoonright A$ is countably tall.

Lemma 3.

Let \mathcal{I} be an ideal on ω and let \mathcal{F} be al filter on ω .

IF

 $\mathcal{I} \cap \mathcal{F} = \emptyset$ and for every countable family $\mathcal{H} \subseteq \mathcal{F}^+$ there is an $I \in \mathcal{I}$ such that $H \cap I \in \mathcal{F}^+$ for all $H \in \mathcal{H}$ (i.e. \mathcal{I} is ω -hitting mod \mathcal{F}) THEN

the forcing $\mathbb{L}_{\mathcal{F}}$ seals the ideal \mathcal{I} .

As $\mathcal{I} \cap \mathcal{F} = \emptyset$, $\mathcal{I}^* \subseteq \mathcal{F}^+$ and by genericity $\Vdash_{\mathbb{L}_{\mathcal{F}}} ``X \cap A_{gen}$ is infinite for all $X \in \mathcal{F}^+$ ". Thus, $\Vdash_{\mathbb{L}_{\mathcal{F}}} ``A_{gen} \in \mathcal{I}^+$ ".

We are proving...

 \mathcal{I} is ω -hitting mod \mathcal{F} implies that $\mathbb{L}_{\mathcal{F}}$ seals the ideal \mathcal{I} .

Let $\langle \dot{A}_n : n \in \omega \rangle$ be a sequence of $\mathbb{L}_{\mathcal{F}}$ -names for infinite subsets of \dot{A}_{gen} . Assume that for all $l \in \mathcal{I}$ there are $T_l \in \mathbb{L}_{\mathcal{F}}$, and natural numbers n_l , m_l such that $T_l \Vdash ``\dot{A}_{n_l} \cap l \subseteq m_l"$. (*) Let $\operatorname{rk}_n(s) = 0$ if $\exists B \in \mathcal{F}^+ \forall b \in B(s \frown b \text{ favors } b \in \dot{A}_n)$ and $\operatorname{rk}_n(s) \leqslant \alpha$ if $\exists B \in \mathcal{F}^+ \forall b \in B(\operatorname{rk}_n(s \frown b) < \alpha)$ for $\alpha > 0$. **Claim.** $\operatorname{rk}_n(s) < \infty$ for all s and n. Fix n. Let $k \in \omega$ and let $\rho_k(s) = 0$ if $\exists b > k(s \text{ favors } b \in \dot{A}_n)$

Then $\rho_k(s) < \infty$ (easy). Note that *s* only favours elements of ran(*s*) $(\dot{A}_n \text{ is forced to be a subset of } \dot{A}_{gen})$. If $\rho_k(s) = 1$ then $\operatorname{rk}_n(s) = 0$. $(\exists B \in \mathcal{F}^+ \forall \in B \ s \frown b \text{ favors } a \in \dot{A}_n \text{ for some } a = a_b \text{ with } a > k$. As $\rho_k(s) > 0$, $\{b : a = a_b\} \in \mathcal{F}^*$ for each *a* and as $a_b \in \operatorname{ran}(s) \cup \{b\}$, on an \mathcal{F} -positive set, $a_b = b$.

Now, let $k > \max(\operatorname{ran}(s))$. Then $\rho_k(s) \ge 1$, hence $\operatorname{rk}_n(s) < \infty$.

... and we prove.

 \mathcal{I} is ω -hitting mod \mathcal{F} implies that $\mathbb{L}_{\mathcal{F}}$ seals the ideal \mathcal{I} .

 $\mathsf{rk}_n(s) = 0$ if $\exists B_{s,n} \in \mathcal{F}^+ \ \forall b \in B_{s,n}(s \frown b \text{ favors } b \in A_n)$ and $\mathsf{rk}_n(s) < \infty$ for all s and n.

WLOG $\operatorname{rk}_{n_l}(s_{T_l}) = 0$ for all $l \in \mathcal{I}$.

For every $I \in \mathcal{I}$ consider B_{s_l,n_l} . Since \mathcal{I} is ω -hitting mod \mathcal{F} , there is an I which intersects all the $B_{s,n}$'s in a \mathcal{F} -positive set, and i.p. $I \cap B_{s_l,n_l} \in \mathcal{F}^+$. So, there is a $b > m_l$ with $b \in I \cap B_{s_l,n_l} \cap \operatorname{succ}_{\mathcal{T}_l}(s_l)$.

As $s_i b$ favors $b \in A_{n_i}$, there is a $T \leq T_i$ whose stem extends $s_i b$ such that $T \Vdash b \in A_{n_i}$, a contradiction.

Lemma 4. (Barman-Dow)

Let X be a Fréchet space without isolated points, let $x \in X$ and let \mathcal{M} be a countable family of nowhere dense subsets of X. Then there is an infinite sequence C_x converging to x with only finite intersection with every element of \mathcal{M} .

Proof. Fix $\langle M_n : n \in \omega \rangle$ an enumeration of \mathcal{M} and a sequence $\langle x_n : n \in \omega \rangle \subseteq X \setminus \{x\}$ converging to x. Let $X_n = X \setminus (\{x\} \cup \bigcup_{i < n} M_i)$. Then X_n is dense in X for every n. Since X is Fréchet, there is a sequence $\langle x_k^n : k \in \omega \rangle \subseteq X_n$ converging to x_n for each $n \in \omega$. Put $X' = \{x_k^n : k, n \in \omega\}$. Then $x \in \overline{X'}$, and hence there is a sequence $C_x \subseteq X'$ converging to x. By the construction, the sequence C_x is as required.

Main lemma

Proposition 4.

Let $X = (\omega, \tau)$ be a regular Fréchet space, $x \in X$ be such that $\pi\chi(x, X) > \omega$. Let \mathcal{G} be the filter of dense open subsets of X. Then: (1) $\mathbb{L}_{\mathcal{G}}$ seals \mathcal{I}_x , and

(2) $\mathbb{L}_{\mathcal{G}}$ strongly preserves ω -hitting.

Recall

Lemma 3.

Let \mathcal{I} be an ideal on ω and let \mathcal{F} be al filter on ω . \mathcal{I} is ω -hitting mod $\mathcal{F} \Rightarrow \mathbb{L}_{\mathcal{F}}$ seals the ideal \mathcal{I} .

and

Lemma 2.

Let \mathcal{I} be an ideal on ω and let $\mathcal{F} = \mathcal{I}^*$ be the dual filter. Then: $\mathbb{L}_{\mathcal{F}}$ strongly preserves ω -hitting \Leftrightarrow For every $A \in \mathcal{I}^+$ and every $\mathcal{J} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright A$ the ideal \mathcal{J} is not ω -hitting.

Michael, use the blackboard!

4 3 b

-

Plan of the proof:

Let $V \models CH$ and $\diamond(S_{\omega_1}^{o_2})$. Construct a FS iteration of length ω_2 σ -centered forcing notions, eventually taking care of all countable Fréchet groups of weight ω_1 . At stage α when dealing with the group \mathbb{G}_{α} handed to us by a bookkeeping device we need to do three things:

- add a set A ⊆ G_α which has the neutral element 1_G as an accumulation point, and does not have a sequence converging to 1_G, (Done! Main lemma)
- **2** make sure that we do not add convergent sequences to the sets added earlier in the iteration. (Done! Preservation of ω -hitting by \mathbb{L}_{nwd^*} and FSI)
- \bigcirc make sure that $1_{\mathbb{G}}$ remains in the closure of A later on.

Definition

Let (\mathbb{G}, \cdot) be an abstract group and let $A \subseteq \mathbb{G} \setminus \{1_{\mathbb{G}}\}$. A subset B of \mathbb{G} is called *A-large* if for every $b \in A$ and $a \in \mathbb{G}$, either $a \in B$ or $b \cdot a^{-1} \in B$.

The intention is as follows: Let A_{gen} be the generically added set. If there was a finer group topology in which $1_{\mathbb{G}}$ is not in the closure of X, then there would be a set $U \subseteq \mathbb{G}$ containing $1_{\mathbb{G}}$ and such that $U \cdot U \cap A_{gen} = \emptyset$, a new open neighbourhood of $1_{\mathbb{G}}$ disjoint from A_{gen} . A set B is A_{gen} -large iff it contains the complement of such a U.

Definition

A family C of subsets of a group \mathbb{G} is ω -hitting w.r.t A if given $\langle A_n : n \in \omega \rangle \subset A$ -large there is a $C \in C$ s. t. $C \cap A_n$ is infinite for all n.

通 と く ヨ と く ヨ と

Again, suppose that a set U is a new open neighbourhood of $1_{\mathbb{G}}$ disjoint from A_{gen} (such that $U \cdot U \cap A_{gen} = \emptyset$). The information about the future group topologies extending our topology τ , includes information about **convergent sequences**: If C converges to $1_{\mathbb{G}}$ in τ it will also converge in all future topologies, in particular, C would have to be almost contained in U!

However, if we manage to prove that for every candidate for U there is a C which is not almost contained in U (equivalently, has an infinite intersection with the A_{gen} -large set which is the complement of U) and also manage to preserve this, we will be able to show that $1_{\mathbb{G}}$ will be in the closure of X in all future group topologies extending τ !!

Definition

We say that a relation $R \subseteq \mathbb{G} \times \mathbb{G}$ is *large* if for every $b, a \in \mathbb{G}$, either $\langle b, a \rangle \in R$ or $\langle b, b \cdot a^{-1} \rangle \in R$. By large we will denote the family of relations which are large.

- 4 周 ト 4 戸 ト 4 戸 ト

Lemma 5.

Let \mathbb{G} be a countable Fréchet group and let $\langle R_n : n \in \omega \rangle$ be a sequence of large relations. Then there is a sequence C convergent to $1_{\mathbb{G}}$ such that $R_n^{-1}[C \setminus F] \in \mathsf{nwd}(\mathbb{G})^+$ for every $n \in \omega$ and $F \in [\mathbb{G}]^{<\omega}$.

For every
$$n \in \omega$$
 let $Z_n = \{a \in \mathbb{G} : R_n^{-1}(a) \in \mathsf{nwd}(\mathbb{G})\}$ and put $\mathcal{M} = \{R_n^{-1}(a) \cdot a^{-1} : a \in Z_n, n \in \omega\} \cup \{Z_n : Z_n \in \mathsf{nwd}(\mathbb{G})\}.$
Let $C \to 1_{\mathbb{G}}$ be such that $|C \cap M| < \omega$ for all $M \in \mathcal{M}$.

Claim: $R_n^{-1}[C \setminus F] \in \text{nwd}(\mathbb{G})^+$ for every $n \in \omega$ and $F \in [\mathbb{G}]^{<\omega}$. Let $n \in \omega$ and $F \in [\mathbb{G}]^{<\omega}$ are given.

Case 1. $Z_n \in \mathsf{nwd}(\mathbb{G})$.

Then there is an $a \in C \setminus F$ such that $R_n^{-1}(a) \in \operatorname{nwd}(\mathbb{G})^+$.

Case 2. $Z_n \in \operatorname{nwd}(\mathbb{G})^+$. Fix $a \in Z_n$. Then $b \notin R_n^{-1}(a) \cdot a^{-1}$ eq. $b \cdot a \notin R_n^{-1}(a)$) for almost all $b \in C$. Since R_n is large, $\langle b \cdot a, b \rangle \in R_n$ for almost all $b \in C$. I.p., $\{b \cdot a \colon b \in C\} \subseteq^* R_n^{-1}[C \setminus F]$ and $\{b \cdot a \colon b \in C\}$ converges to a. Thus, $Z_n \subseteq \overline{R_n^{-1}[C \setminus F]}$ and hence also $R_n^{-1}[C \setminus F] \in \operatorname{nwd}(\mathbb{G})^+$.

Lemma 6.

Let \mathbb{G} be a countable Fréchet topological group. Then

$$\Vdash_{\mathbb{L}_{\mathsf{nwd}^*(\mathbb{G})}} ``\mathcal{C} \text{ is } \omega\text{-hitting w.r.t..} \dot{A}_{gen}",$$

where $C = \mathcal{I}_{1_{\mathbb{C}}}^{\perp}$ is the ideal consisting of sequences converging to $1_{\mathbb{G}}$.

If not, then there are a sequence $\langle \dot{A}_n : n \in \omega \rangle$ of $\mathbb{L}_{nwd^*(\mathbb{G})}$ -names and a condition $T^* \in \mathbb{L}_{nwd^*(\mathbb{G})}$ such that $T^* \Vdash " \forall n \in \omega \ (\dot{A}_n \in \dot{A}_{gen}$ -large)" and for every $C \in C$ there are a condition $T_C \in \mathbb{L}_{nwd^*(\mathbb{G})}$, a natural number n_C and F_C a finite subset of \mathbb{G} such that $T_C \Vdash "C \cap \dot{A}_{n_C} \subseteq F_C$ ". (*) For each $s \in T^*$ with $s \supseteq s_{T^*}$ and each natural number n, put

$$R_{s,n} = \{ \langle b, a \rangle \colon b \in \text{succ}_{T^*}(s) \Rightarrow s^{\frown}b \text{ favors } a \in A_n \}.$$

Claim. The relation $R_{s,n}$ is large.

Preserving A_{gen} has $1_{\mathbb{G}}$ in its closure

we are proving

Let ${\mathbb G}$ be a countable Fréchet topological group. Then

$$\Vdash_{\mathbb{L}_{\mathsf{nwd}^*(\mathbb{G})}}$$
 " \mathcal{C} is ω -hitting w.r.t.. \dot{A}_{gen} ",

where $\mathcal{C} = \mathcal{I}_{1_{\mathbb{C}}}^{\perp}$ is the ideal consisting of sequences converging to $1_{\mathbb{G}}$.

For each $s \in T^*$ with $s \supseteq s_{T^*}$ and each natural number *n*, put

$$R_{s,n} = \{ \langle b, a \rangle \colon b \in \text{succ}_{T^*}(s) \Rightarrow s^{\frown}b \text{ favors } a \in \dot{A}_n \}.$$

Claim. The relation $R_{s,n}$ is large. By previous lemma, there is a $C \in C$ such that $R_{s,n}^{-1}(C \setminus F) \in \text{nwd}(\mathbb{G})^+$ for every $s \in T^*$ with $s \supseteq s_{T^*}$, $n \in \omega$ and $F \in [\mathbb{G}]^{<\omega}$. In particular, $R_{s_c,n_c}^{-1}(C \setminus F_c) \in \text{nwd}(\mathbb{G})^+$, where $s_C = s_{T_c}$. Pick an $b \in \text{succ}_{T_c}(s_c) \cap R_{s_c,n_c}^{-1}(C \setminus F_c)$. Then, there is an $a \in C \setminus F_c$ such that $s_C \circ b$ favors $a \in A_{n_c}$, and hence there is a condition $T \leq T_c$ whose stem extends $s_C \circ b$ such that $T \Vdash$ " $a \in A_{n_c}$ ", a contradiction to the initial assumption (*).

One last bit

A forcing \mathbb{P} strongly preserves ω -hitting w.r.t. A if for every B a \mathbb{P} -name for a A-large subset of a group \mathbb{G} there is a sequence $\langle B_n \colon n \in \omega \rangle \subset A$ -large such that for any $C \subseteq \mathbb{G}$, if $C \cap B_n$ is infinite for all n then $\Vdash_{\mathbb{P}}$ " $C \cap B$ is infinite".

Lemma 7.

Let $\mathbb P$ be a $\sigma\text{-centered}$ forcing notion. Then $\mathbb P$ strongly preserves $\omega\text{-hitting}$ w.r.t. A.

Proof. WLOG, \mathbb{P} is a complete Boolean algebra, $\mathbb{P}^+ = \bigcup_{n \in \omega} \mathcal{U}_n$, all \mathcal{U}_n being ultrafilters. Let \dot{B} be a \mathbb{P} -name for an A-large subset of a group \mathbb{G} . For every $n \in \omega$, put

$$B_n = \{ a \in \mathbb{G} : \llbracket a \in \dot{B} \rrbracket \in \mathcal{U}_n \}.$$

Each B_n is A-large and if C is a subset of \mathbb{G} such that $C \cap A_n$ is infinite for all n, then $\Vdash_{\mathbb{P}}$ " $C \cap A$ is infinite".

Lemma 8.

Finite support iteration of ccc forcings strongly preserving ω -hitting w.r.t. A strongly preserves ω -hitting w.r.t. A. Plan of the proof: Let $V \models CH$ and $\diamond(S_{\omega_1}^{o_2})$. Construct a FS iteration of length ω_2 σ -centered forcing notions, eventually taking care of all countable Fréchet groups of weight ω_1 . At stage α when dealing with the group \mathbb{G}_{α} handed to us by a bookkeeping device we need to do three things:

- add a set A ⊆ G_α which has the neutral element 1_G as an accumulation point, and does not have a sequence converging to 1_G, (Done! Main lemma)
- **2** make sure that we do not add convergent sequences to the sets added earlier in the iteration. (Done! Preservation of ω -hitting by \mathbb{L}_{nwd^*} and FSI)
- **(a)** make sure that $1_{\mathbb{G}}$ remains in the closure of A later on. (Done! by Lemma 6 and preservation of ω -hitting w.r.t. A).

THANK YOU!!

- 4 回 > - 4 回 > - 4 回 >